Syn lett

A. Gorepatil et al.

Letter

Zirconyl Nitrate as an Efficient Catalyst for Facile Synthesis of 2-Aryl-2,3-dihydroquinolin-4(1*H*)-one Derivatives in Aqueous Medium

Α

Amarsinha Gorepatil^a Pratapsinha Gorepatil^b Mahadev Gaikwad^c Dattakumar Mhamane^b Ajit Phadkule^b

Vilas Ingle*d

^a Department of Chemistry, S. G. R. G. Shinde College,

Paranda, Dist-Osmanabad (MH), 413 505, India ^b Department of Chemistry, Sangameshwar College,

Solapur (MH), 413 001, India

^c Department of Chemistry, B. P. C. A. S. Angar,

Dist- Solapur (MH), 413 214, India

^d Department of Chemistry, S. C. S. College, Omerga, Dist-Osmanabad (MH), 413 606, India inglevilas71@yahoo.in

Received: 27.07.2017 Accepted after revision: 29.08.2017 Published online: 21.09.2017 DOI: 10.1055/s-0036-1589110; Art ID: st-2017-d0585-I

Abstract A simple, green, and efficient method is introduced for the synthesis of 2-aryl-2,3-dihydroquinolin-4(1*H*)-ones under mild reaction conditions with improved yields by intramolecular cyclization of o-aminochalcones with zirconyl nitrate $[Zn(O)(NO_3)_2 \cdot nH_2O]$ as a water-tolerant Lewis-acid catalyst.

Key words zirconyl nitrate, dihydroquinolinones, aminochalcones, cyclization, Lewis acids

2-Aryl-2,3-dihydroquinolin-4(1*H*)-ones exhibit a variety of pharmaceutical properties, such as anticancer, antibiotic, and antitumor activities.¹⁻³ Several routes have been reported for their synthesis from *o*-aminochalcones by using catalysts such as transition metals or metal triflates,⁴ thiourea, or ionic liquids.⁵ In addition, 2-aryl-2,3-dihydroquinolin-4(1*H*)-ones have also been synthesized by reaction between *o*-aminoacetophenone and aromatic aldehydes in the presence of an organocatalyst,⁶ under microwave irradiation, or on a solid support.⁷

However, most of these methods have drawbacks such as the need for strongly acidic or basic reagents⁷ or the use of toxic solvents,^{4,5} long reaction times, or large quantities of catalyst.⁶ In the context of developing environmentally benign reaction conditions and media for organic transformations, zirconyl nitrate $[Zn(O)(NO_3)_2 \cdot nH_2O]$ and its salts have been found to be effective, water-tolerant, reusable Lewis acids.⁸ We have been engaged in finding productive routes for the synthesis of fused heterocyclic compounds.⁹ In this work, we report for the first time the use of zirconyl

nitrate in the synthesis of 2-aryl-2,3-dihydroquinolin-4(1*H*)ones by the intramolecular cyclization of *o*-aminochalcones in aqueous ethanol.

To find the best experimental conditions, we targeted the synthesis of 2-phenyl-2,3-dihydroquinolin-4(1*H*)-one from (*E*)-1-(2-aminophenyl)-3-phenylprop-2-en-1-one. We also optimized such parameters as the concentration of the catalyst and the solvents, as summarized in Table 1. Zirconyl nitrate (20 mol%) was found to be best suited catalyst

 Table 1
 Optimization of Reaction Conditions for the Synthesis of 2-Phenyl-2,3-dihydroquinolin-4(1*H*)-one^a

Entry	Catalyst (mol%)	Solvent	Time (h)	Yield ^b (%)
1	SbCl ₃ (20 mol%)	CH ₃ CN	3	60
2	ZnO (20 mol%)	CH ₃ CN	5	52
3	ZnO (20 mol%)	EtOH	4	58
4	ZrO(NO ₃) ₂ .nH ₂ O (10 mol%)	CH ₃ CN	3	70
5	ZrO(NO ₃) ₂ .nH ₂ O (10 mol%)	EtOH	3	79
6	ZrO(NO ₃) ₂ .nH ₂ O (20 mol%)	EtOH	3	96
7	ZrO(NO ₃) ₂ .nH ₂ O (20 mol%)	1:1 EtOH-H ₂ O	3	98
8	ZrO(NO ₃) ₂ .nH ₂ O (20 mol%)	1,4-dioxane	4	80
9	ZrO(NO ₃) ₂ .nH ₂ O (20 mol%)	toluene	4	78

^a Reaction condition: (*E*)-1-(2-aminophenyl)-3-phenylprop-2-en-1-one (1 mmol), solvent (4 mL), stirring, 50 °C.

^b Isolated yield.

A. Gorepatil et al.

for the reaction and 1:1 aqueous ethanol (Table 1, entry 7) was the best solvent, as compared with CH_3CN , 1,4-dioxane, or toluene (entries 2, 8, and 9).

By using the optimized conditions of 20 mol% of zirconyl nitrate in 1:1 aqueous ethanol at 50 °C, we went on to prepare a number of 2-aryl-2,3-dihydroquinolin-4(1*H*)ones from various substituted 2-aminochalcones (Scheme 2). The yields and reaction times are summarized in Table 2. In these transformations, we confirmed that 20 mol% of zirconyl nitrate is the optimum concentration. Increasing the concentration of the catalyst (>20 mol%) did not affect the rate of reaction or the yield of the product. We also studied the effect of substituents on the progress of reaction, and we found that electron-donating substituents facilitate the reaction compared with electron-withdrawing substituents.

Scheme 1 Zirconyl nitrate-catalyzed synthesis of 2-aryl-2,3-dihydroquinolin-4(1*H*)-ones

	Table 2	Synthesis of 2-Ar	yl-2,3-dihydro	quinolin-4	(1H)-ones ^a
--	---------	-------------------	----------------	------------	------------------------

Entry	D	Time (b)	Viold ^b (%)
	ĸ	nine (n)	Tield (%)
1	Ph	3	98
2	4-Cl	4	97
3	2-Cl	3	96
4	4-CH ₃	3	98
5	4-NO ₂	4	88
6	2,4-(NO ₂) ₂	4	86
7	2-CH ₃	2.5	99
8	3-NO ₂	3	93
9	4-N(CH ₃) ₂	3	95
10	4-OCH ₃	2.5	99
11	4-Br	3	96
12	4-F	3	94

^a Reaction condition: 2-aminochalcone (1 mmol), ZrO(NO₃)₂.nH₂O (46 mg, 20 mol%), 1:1 EtOH– H₂O (4 mL), stirring, 50 °C.

^b Isolated yield.

We have also confirmed the structures of the synthesized products from their spectroscopic (IR and ¹H and ¹³C NMR) and mass spectrometric data, and by comparison with data available in the literature.

In conclusion, a simple, efficient, and greener one-pot method has been developed for the synthesis of 2-aryl-2,3dihydroquinolin-4(1H)-ones by using zirconyl nitrate as a water-tolerant Lewis acid catalyst.¹⁰ Compared with previously reported methods, this method proceeds under mild reaction conditions.

Acknowledgment

A.B. would like to thank the University Grant Commission (UGC), New Delhi, for financial support. Thanks are also due to the Principal, S.C.S. College, Omerga for providing laboratory facilities.

References and Notes

- (a) Kraus, J. M.; Verlinde, C. L. M. J.; Karimi, M.; Lepesheva, G. I.; Gelb, M. H.; Buckner, F. S. J. Med. Chem. 2009, 52, 1639.
 (b) Huang, C.-C.; Chang, N.-C. Org. Lett. 2008, 10, 673.
 (c) Glasnov, T. N.; Stadlbauer, W.; Kappe, C. O. J. Org. Chem. 2005, 70, 3864. (d) Claassen, G.; Brin, E.; Crogan-Grundy, C.; Vaillancourt, M. T.; Zhang, H. Z.; Cai, S. X.; Drewe, J.; Tseng, B.; Kasibhatla, S. Cancer Lett. 2009, 274, 243. (e) Hassanin, H. M.; El-Edfawy, S. M. Heterocycles 2012, 85, 2421.
- (2) (a) Manikandan, R.; Jeganmohan, M. Org. Lett. 2014, 16, 3568.
 (b) Iwai, T.; Terao, T.; Fujihara, J.; Tsuji, Y. J. Am. Chem. Soc. 2010, 132, 9602. (c) Kadnikov, D.; Larock, R. J. Organomet. Chem. 2003, 687, 425. (d) Chen, X.; Cui, X.; Wu, Y. Org. Lett. 2016, 18, 2411.
 (e) Peng, X.; Wang, W.; Jiang, C.; Sun, D.; Xu, Z.; Tung, C. Org. Lett. 2014, 16, 5354.
- (3) (a) Hradil, P.; Hlavác, J.; Soural, M.; Hajdúch, M.; Kolár, M.; Vecerová, R. *Mini-Rev. Med. Chem.* **2009**, *9*, 696. (b) Larsen, R. D. *In: Science of Synthesis*; Black, D. S., Ed.; Thieme: Stuttgart, **2005**, 551. (c) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Tachibana, Y.; Kuo, S.-C.; Hamel, E.; Hackl, T.; Lee, K.-H. *J. Med. Chem.* **1998**, *41*, 1155. (d) Zhang, S.-X.; Feng, J.; Kuo, S.-C.; Brossi, A.; Hamel, E.; Tropsha, A.; Lee, K.-H. *J. Med. Chem.* **2000**, *43*, 167. (e) Singh, O. V.; Kapil, R. S. *Synlett* **1992**, 751.
- (4) (a) Pandit, R. P.; Sharma, K.; Lee, Y. R. Synthesis 2015, 47, 3881.
 (b) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317. (c) Lei, B.-L.; Ding, C.-H.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 18250. (d) Bhattacharya, R. N.; Kundu, P.; Maiti, G. Synth. Commun. 2010, 40, 476. (e) Castaing, M.; Wason, S. L.; Estepa, B.; Hooper, J. F.; Willis, M. C. Angew. Chem. Int. Ed. 2013, 52, 13280. (f) Rao, V. K.; Rao, M. S.; Kumar, A. J. Heterocycl. Chem. 2011, 48, 1356.
- (5) (a) Liu, X.; Lu, Y. Org. Lett. 2010, 12, 5592. (b) Kanagaraj, K.; Pitchumani, K. J. Org. Chem. 2013, 78, 744. (c) Chelghoum, M.; Bahnous, M.; Bouraiou, A.; Bouacida, S.; Belfaitah, A. Tetrahedron Lett. 2012, 53, 4059.
- (6) (a) Chandrasekhar, S.; Vijeender, K.; Sridhar, C. *Tetrahedron Lett.* **2007**, 48, 4935. (b) Zheng, H.; Liu, Q.; Wen, S.; Yang, H.; Luo, Y. *Tetrahedron: Asymmetry* **2013**, *24*, 875.
- (7) (a) Kumar, K. H.; Muralidharan, D.; Perumal, P. T. Synthesis **2004**, 63. (b) Varma, R. S.; Saini, R. K. Synlett **1997**, 857.
 (c) Ahmed, N.; van Lier, J. E. Tetrahedron Lett. **2006**, 47, 2725.
 (d) Ahmed, N.; van Lier, J. E. Tetrahedron Lett. **2007**, 48, 13.
 (e) Mondal, B.; Pan, S. C. Org. Biomol. Chem. **2014**, *12*, 9789.
 (f) Muthkrishnan, M.; Mujahid, M.; Punitharasu, V.; Dnyaneshwar, D. A. Synth. Commun. **2010**, 40, 1391. (g) Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S. Tetrahedron Lett. **2008**, 49, 6974. (h) Varma, R. S. J. Heterocycl. Chem. **1999**, 36, 1565.
- (8) (a) Hasaninejad, A.; Shekouhy, M.; Mohammadizadeh, M. R.; Zare, A. RSC Adv. 2012, 2, 6174. (b) Sheldon, R. In Green Chemistry in the Pharmaceutical Industry; Dunn, P. J.; Wells, A. S.;

A. Gorepatil et al.

Williams, M. T., Eds.; Wiley-VCH: Weinheim, **2010**, Chap. 1 1. (c) Selvam, J. J. P.; Suresh, V.; Rajesh, K.; Reddy, S. R.; Venkateswarlu, Y. *Tetrahedron Lett.* **2006**, 47, 2507. (d) Das, B.; Krishnaiah, M.; Venkateswarlu, K. *Tetrahedron Lett.* **2006**, 47, 6027. (e) Mantri, K.; Komura, K.; Sugi, Y. *Green Chem.* **2005**, 7, 677. (f) Corma, A.; García, H. *Chem. Rev.* **2003**, *103*, 4307. (g) Kobayashi, S.; Manabe, K. *Acc. Chem. Res.* **2002**, *35*, 209. (h) Shinde, S. S.; Said, M. S.; Surwase, T. B.; Kumar, P. *Tetrahedron Lett.* **2015**, *56*, 5916.

- (9) (a) Gorepatil, P. B.; Mane, Y. D.; Gorepatil, A. B.; Gaikwad, M. V.; Ingle, V. S. *Res. Chem. Intermed.* **2015**, *41*, 8355. (b) Gorepatil, P. B.; Mane, Y. D.; Ingle, V. S. *Synlett* **2013**, *24*, 2241. (c) Gorepatil, P. B.; Mane, Y. D.; Ingle, V. S. *J. Chem.* **2013**, DOI: 10.1155/2013/108318.
- (10) **2-Aryl-2,3-dihydroquinolin-4(1***H***)-ones; General Procedure** A mixture of the appropriate 2-aminochalcone (1 mmol), EtOH (2 mL), H₂O (2 mL), and ZrO(NO₃)₂,nH₂O (46 mg, 20 mol%) was heated with stirring at 50 °C while the progress of the reaction was monitored by TLC. The reaction was then quenched with H₂O (5 mL), and the mixture was extracted with Et₂O (3 × 10 mL). The combined organic extracts were washed with brine (5 mL) then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, hexane–EtOAc (10:1)].

2-Phenyl-2,3-dihydroquinolin-4(1*H*)-one (Table 2, Entry $1)^{5b,6b,11}$

Off-white solid; yield: 218 mg (98%); mp 153–155 °C. IR (KBr): 3060, 3028, 1638, 1572, 1494, 1358, 1324, 1295, 1157, 1095, 974, 861 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.83 (dd, *J* = 8.5, 1.2 Hz, 1 H), 7.42 (d, *J* = 7.4 Hz, 2 H), 7.40–7.36 (m, 2 H), 7.35–7.33 (m, 2 H), 6.76 (t, *J* = 7.4 Hz, 1 H), 6.68 (d, *J* = 8.5 Hz, 1 H), 4.70 (dd, *J* = 13.5, 3.6 Hz, 1 H), 4.65 (s, 1 H, NH), 2.82 (dd, *J* = 16.3, 14.4 Hz, 1 H), 2.70 (dd, *J* = 15.6, 3.6 Hz, 1 H). ¹³C NMR (150 MHz, CDCl₃): δ = 192.9, 152.4, 136.1, 128.6, 128.3, 127.4, 126.5, 119.2, 117.2, 116.7, 59.1, 45.7. MS (EI): *m/z* = 223.10 [M⁺].

2-(4-Chlorophenyl)-2,3-dihydroquinolin-4(1*H*)-one (Table 2 Entry 2)^{4a,11,12}

Red solid; yield: 249 mg (97%); mp 168–170 °C. IR (KBr): 3343, 3210, 2980, 1666, 1585, 1221, 1150, 750 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.83 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.38–7.31 (m, 5 H), 6.78 (t, *J* = 7.2 Hz, 1 H), 6.71 (d, *J* = 7.8 Hz, 1 H), 4.69 (dd, *J* = 14.5, 4.2 Hz, 1 H), 4.54 (s, 1 H, NH), 2.79 (dd, *J* = 17.3, 14.5 Hz, 1 H), 2.71 (dd, *J* = 17.3, 4.2 Hz, 1 H). ¹³C NMR (150 MHz, CDCl₃): δ = 193.5, 152.3, 138.4, 136.4, 134.1, 129.2, 127.8, 127.5, 119.2, 118.7, 115.9, 57.8, 46.3. MS (EI): *m/z* = 257.07 [M⁺].

2-(4-Methoxyphenyl)-2,3-dihydroquinolin-4(1*H*)-one (Table 2, Entry 10)^{3e,4a,13}

Brown solid; yield: 250 mg (99%); mp 145–147 °C. IR (KBr): 3330, 3145, 2978, 2737, 1663, 1585, 1305, 1224, 1132cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.85 (dd, *J* = 7.8, 1.5 Hz, 1 H), 7.37–7.33 (m, 2 H), 7.31–7.28 (m, 1 H), 6.95–6.86 (m, 2 H), 6.81–6.74 (m, 1 H), 6.67 (d, *J* = 8.1 Hz, 1 H), 4.69 (dd, *J* = 13.5, 3.6 Hz, 1 H), 4.33 (s, 1 H, NH), 3.80 (s, 3 H), 2.89–2.70 (m, 2 H). ¹³C NMR (150 MHz, CDCl₃): δ = 193.3, 158.9, 152.1, 135.5, 133.2, 127.9, 127.7, 119.1, 118.4, 116.0, 114.1, 58.0, 55.5, 46.6. MS (EI): *m/z* = 253.10 [M⁺].

2-(4-Bromophenyl)-2,3-dihydroquinolin-4(1H)-one (Table 2, Entry 11)^{4a,6b,12}

Brown solid; yield: 290 mg (96%); mp 167–169 °C. IR (KBr): 3324, 3053, 1654, 1492, 1325, 1110, 754 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.85 (dd, *J* = 7.8, 1.5 Hz, 1 H), 7.53–7.48 (m, 2 H), 7.36–7.30 (m, 3 H), 6.81–6.76 (m, 1 H), 6.70 (d, *J* = 8.2 Hz, 1 H), 4.71 (dd, *J* = 17.4, 4.8 Hz, 1 H), 4.44 (s, 1 H, NH), 2.87–2.77 (m, 1 H), 2.77–2.70 (m, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 193.7, 152.3, 141.3, 136.9, 132.3, 128.5, 127.8, 123.4, 119.2, 118.8, 117.1, 58.1, 47.1 MS (EI): m/z = 301.02 [M⁺].

- (11) Torii, S.; Okumoto, H.; Xu, L. H.; Sadakane, M.; Shostakovsky, M. V.; Ponomaryov, A. B.; Kalinin, V. N. *Tetrahedron* **1993**, *49*, 6773.
- (12) Chandrasekhar, S.; Chatla, S.; Mukhopadhyay, D.; Ganganna, B.; Vijeender, S.; Srihari, P.; Bhadra, U. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 645.
- (13) Xiao, Z.-P.; Li, H.-Q.; Shi, L.; Lv, P.-C.; Song, Z.-C.; Zhu, H.-L. *ChemMedChem* **2008**, 3, 1077.